Periodic signals

Guillaume Frèche

Version 1.0

Definition 0.1 (Periodic signal, fundamental period)

A signal $x \in \mathcal{F}(\mathbb{R}, \mathbb{K})$ is **periodic** if there exists $T > 0$ such that for any $t \in \mathbb{R}$, $x(t + T) = x(t)$. The smallest $T_0 > 0$ such that $x(t+T_0)=x(t)$ for any $t\in\mathbb{R}$ is the **fundamental period**. We denote ${\cal F}_{T_0}(\mathbb{R},\mathbb{K})$ the subspace of periodic signals with period T_0 .

Remarks:

- If a signal x is periodic with period T_0 , then it is with period kT_0 for any $k \in \mathbb{Z}$. This is a cornerstone property intensively used in the next part.
- In other words, a signal x is periodic with period T if it is invariant by a pure delay of T, i.e. $\tau_T(x) = x$.

Definition 0.2 (Fundamental frequency, fundamental impulse)

Let $x \in \mathcal{F}_{\tau_0}(\mathbb{R}, \mathbb{K})$ be a periodic signal with period T_0 . The **fundamental frequency** of x is the number $f_0 = \frac{1}{T_0}$ $\frac{1}{T_0}$, and the **fundamental impulse** of x is the number $\omega_0 = 2\pi f_0 = \frac{2\pi}{T}$ $\frac{1}{T_0}$.

Definition 0.3 (Complex exponential, cosine)

The **complex exponential** of fundamental impulse ω_0 , amplitude $A > 0$ and phase $\varphi_0 \in [0, 2\pi]$ is the following signal in $\mathcal{F}_{\mathcal{T}_0}(\mathbb{R}, \mathbb{C})$:

$$
e_{\omega_0,A,\varphi_0}:t\mapsto A\exp\left(i(\omega_0t+\varphi_0)\right)
$$

We simply denote $e_{\omega_0} = e_{\omega_0,1,0}$ the complex exponential of amplitude $A = 1$ and phase $\varphi_0 = 0$. The \bf{cosine} of fundamental impulse ω_0 , amplitude $A>0$ and phase $\varphi_0\in[0,2\pi[$ is the following signal in ${\cal F}_{T_0}(\R,\Bbb C)$:

$$
c_{\omega_0,A,\varphi_0}:t\mapsto A\cos(\omega_0 t+\varphi_0)
$$

We simply denote $c_{\omega_0} = c_{\omega_0,1,0}$ the cosine of amplitude $A = 1$ and phase $\varphi_0 = 0$.

Remarks:

- In With these definitions, we can check that the complex exponential and cosine of fundamental impulse ω_0 are periodic signals with period $\mathcal{T}_0=\frac{2\pi}{\pi}$ $\frac{1}{\omega_0}$.
- If a periodic signal with period T_0 is the input of an LTI system, then the corresponding output is with period T_0 as well. Indeed let an LTI system L, a periodic signal x with period T_0 , et $y=L(x)$ the corresponding output. Since LTI systems commute with pure delays,

$$
\tau_{\mathcal{T}_0}(y) = \tau_{\mathcal{T}_0}(L(x)) = L(\tau_{\mathcal{T}_0}(x)) = L(x) = y
$$

thus y is also periodic with period T_0 .

► As we are going to see in Example [0.1,](#page-2-0) we often deal in practice with signals of the form $t\mapsto e_{\omega_0,A,\varphi_0}(t) \Upsilon(t)$ and $t\mapsto c_{\omega_0,A,\varphi_0}(t)\Upsilon(t),$ namely zero over $]-\infty,0[$ and oscillating over $[0,+\infty[$. These signals will be the matter of a future lecture.

If a signal x is periodic with period $| \tau_0,$ signal $t \mapsto |x(t)|^2$ is clearly periodic with period $| \tau_0|$ as well. Thus for any $n \in \mathbb{N}^*,$

$$
\int_{-\pi T_0}^{\pi T_0} |x(t)|^2 dt = 2n \int_0^{T_0} |x(t)|^2 dt
$$

When n goes to $+\infty$, we note that a non-zero periodic signal has infinite energy. However, the average power of such a periodic signal x is:

$$
P(x) = \lim_{t \to +\infty} \frac{1}{2t} \int_{-t}^{t} |x(u)|^2 du = \lim_{n \to +\infty} \frac{1}{2nT_0} \int_{-nT_0}^{nT_0} |x(u)|^2 du = \frac{1}{T_0} \int_{0}^{T_0} |x(u)|^2 du
$$

We are going to define a subspace of $\mathcal F_{\tau_0}(\R,\mathbb K)$ containing periodic signals with period τ_0 which are locally square integrable, i.e. they have a finite average power.

Lemma 0.1

Let x be a periodic signal with period T_0 . For any $a \in \mathbb{R}$,

$$
\int_{a}^{a+T_0} x(t)dt = \int_{0}^{T_0} x(t)dt
$$

PROOF : If $a \in [0, T_0]$, then $T_0 \in [a, a + T_0]$. By the change of variable $t \mapsto t - T_0$, we get

$$
\int_{a}^{a+T_0} x(t)dt = \int_{a}^{T_0} x(t)dt + \int_{T_0}^{a+T_0} x(t)dt = \int_{a}^{T_0} x(t)dt + \int_{0}^{a} x(t+T_0)dt = \int_{0}^{T_0} x(t)dt
$$

In general, let $a \in \mathbb{R}$. If $b = a - \frac{a}{b}$ T_0 $\left| T_0, \text{ then } b \in [0, T_0] \text{ and by the change of variable } t \mapsto t - \left| \frac{\partial^2 f}{\partial x^2} \right|$ T_0 T_0 ,

$$
\int_{a}^{a+T_0} x(t)dt = \int_{b}^{b+T_0} x(t)dt = \int_{0}^{T_0} x(t)dt
$$

This lemma indicates that the integral of a periodic signal with period T_0 is identical on any interval of length T_0 . Therefore, we can now define the subspace of signals with finite average power and define on this subspace a scalar product base on the average power, instead of the energy which is infinite.

Definition 0.4

We denote $L^2_{\tau_0}(\R,\mathbb{K})$ the subspace of ${\cal F}_{\tau_0}(\R,\mathbb{K})$ containing the periodic signals with period τ_0 which are square integrable over $[0, T_0]$, i.e.

$$
L^2_{\mathcal{T}_0}(\mathbb{R},\mathbb{K})=\left\{x\in\mathcal{F}_{\mathcal{T}_0}(\mathbb{R},\mathbb{K}),\frac{1}{\mathcal{T}_0}\int_0^{\mathcal{T}_0}|x(t)|^2dt<+\infty\right\}
$$

Definition 0.5 We define a **scalar product** / **Hermitian product** over $\mathcal{L}^2_{\mathcal{T}_0}(\mathbb{R}, \mathbb{K})$ by

$$
\forall (x,y) \in L_{T_0}^2(\mathbb{R},\mathbb{K})^2 \qquad \langle x,y \rangle_{T_0} = \frac{1}{T_0} \int_0^{T_0} x(t) y^*(t) dt
$$

From this scalar / Hermitian product, we can define the norm of a signal x to which we can connect the average power of the signal:

$$
\forall x \in L_{\mathcal{T}_0}^2(\mathbb{R}, \mathbb{K}) \qquad P(x) = \|x\|_{\mathcal{T}_0}^2 = \langle x, x \rangle_{\mathcal{T}_0}
$$

i.e.

$$
\forall x \in L_{T_0}^2(\mathbb{R}, \mathbb{K}) \quad P(x) = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt
$$

Remarks:

- \blacktriangleright We defined these integrals over the interval $[0, T_0]$ but according to the lemma, any interval of length T_0 is suitable. In some cases, it is more interesting to exploit the symmetry of interval $\begin{bmatrix} -T_0 \end{bmatrix}$ $\frac{T_0}{2}$, $\frac{T_0}{2}$ 2 $\Big]$, when we deal with odd or even signals for example.
- \triangleright We can define cross-correlation and autocorrelation of periodic signals from this new scalar product.

Proposition 0.2

The autocorrelation of a periodic signal with period T_0 is also a periodic signal with period T_0 .

PROOF: Let $x \in L^2_{T_0}(\mathbb{R}, \mathbb{K})$.

$$
\forall t \in \mathbb{R} \qquad \gamma_{\mathsf{x}}(t+\mathcal{T}_0)=\langle \mathsf{x}, \tau_{t+\mathcal{T}_0}(\mathsf{x}) \rangle = \langle \mathsf{x}, \tau_t(\mathsf{x}) \rangle = \gamma_{\mathsf{x}}(t)
$$

because the periodicity of x implies $\tau_{t+T_0}(x) = \tau_t(\tau_{T_0}(x)) = \tau_t(x)$.

Now we study the convolution of two non-zero periodic signals x and y with the same period T_0 . Let $t \in \mathbb{R}$. Then signals $u \mapsto y(t - u)$ and $u \mapsto x(u)y(t - u)$ are also periodic with period T_0 , thus

$$
(x * y)(t) = \int_{-\infty}^{+\infty} x(u)y(t-u)du = \lim_{n \to +\infty} \int_{-nT_0}^{nT_0} x(u)y(t-u)du = \lim_{n \to +\infty} 2n \int_0^{T_0} x(u)y(t-u)du = +\infty
$$

This result is not surprising, since the notions of energy and convolution are connected through correlation, and non-zero periodic signals have infinite energy. As for the scalar product, we have to adapt our definition of convolution.

Definition 0.6 (Circular convolution)

The **circular convolution** \otimes is a product in $\mathcal{F}_{\mathcal{T}_0}(\mathbb{R}, \mathbb{K})$ defined by

$$
\forall (x,y)\in \mathcal{F}_{\mathcal{T}_0}(\mathbb{R},\mathbb{K})^2 \qquad \forall t\in \mathbb{R} \qquad (x\otimes y)(t)=\frac{1}{\mathcal{T}_0}\int_0^{\mathcal{T}_0}x(u)y(t-u)du
$$

Remark: The circular convolution of two periodic signals x and y with period T_0 is also periodic with period T_0 . Indeed, for any $t \in \mathbb{R}$,

$$
(x \otimes y)(t + T_0) = \frac{1}{T_0} \int_0^{T_0} x(u)y(t + T_0 - u) du = \frac{1}{T_0} \int_0^{T_0} x(u)y(t - u) du = (x \otimes y)(t)
$$

Example 0.1

We go back to the RC circuit and we look for its response to the input $V(t)=\sin(\omega_0 t)\Upsilon(t)=\cos\left(\omega_0 t-\frac{\pi}{2}\right)\Upsilon(t),$ which is periodic over $[0, +\infty]$. We determine this response with two techniques developped so far: solving the governing differential equation and computing the convolution with the impulse response.

To abbreviate computations, we set $\tau=RC$, the time constant of the circuit. Recall that the solutions of the homogeneous differential equation are of the form $u_c(t) = K \exp\left(-\frac{t}{2}\right)$ τ), with $K \in \mathbb{R}$. We look for a particular solution of the form $u_c(t)=A\sin(\omega_0 t)+B\cos(\omega_0 t)$ over $[0,+\infty[$. The derivative of such a function is $u_c'(t)=A\omega_0\cos(\omega_0 t)-B\omega_0\sin(\omega_0 t)$. Then the differential equation becomes over $[0, +\infty]$:

$$
(A - B\tau\omega_0)\sin(\omega_0 t) + (A\tau\omega_0 + B)\cos(\omega_0 t) = \sin(\omega_0 t)
$$

By identification, we get $A - B\tau\omega_0 = 1$ and $A\tau\omega_0 + B = 0$, yielding

$$
A = \frac{1}{1 + \tau^2 \omega_0^2} \quad \text{and} \quad B = -\frac{\tau \omega_0}{1 + \tau^2 \omega_0^2}
$$

Thus we have the solution

$$
u_c(t) = \begin{cases} 0 & \text{if } t < 0\\ K \exp\left(-\frac{t}{\tau}\right) + \frac{1}{1 + \tau^2 \omega_0^2} \sin(\omega_0 t) - \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2} \cos(\omega_0 t) & \text{if } t > 0 \end{cases}
$$

Since u_c in continuous in $t = 0$,

$$
\lim_{t \to 0^-} u_c(t) = 0 = \lim_{t \to 0^+} u_c(t) = K - \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2}
$$

for any $t \in [0, +\infty[,$

$$
u_c(t) = \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2} \exp\left(-\frac{t}{\tau}\right) + \frac{1}{1 + \tau^2 \omega_0^2} \sin(\omega_0 t) - \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2} \cos(\omega_0 t)
$$

Now we want to retrieve this result by the convolution of $V(t)$ with impulse response $h(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right)$ τ \int $\Upsilon(t)$. For $t\in]-\infty,0[$, the supports of $u_c(u)$ and $h(t-u)$ are disjoint, thus $u_c(t)=(V*h)(t)=0.$ For $t\in [0,+\infty[,$

$$
u_c(t) = (V * h)(t) = \int_{-\infty}^{+\infty} \Upsilon(u) \sin(\omega_0 u) \frac{1}{\tau} \exp\left(-\frac{t - u}{\tau}\right) \Upsilon(t - u) du
$$

= $\frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right) \int_0^t \sin(\omega_0 u) \exp\left(\frac{u}{\tau}\right) du$

A double integration by parts (left to the interested reader) gives

$$
\int_0^t \sin(\omega_0 u) \exp\left(\frac{u}{\tau}\right) du = \frac{\tau^2 \omega_0}{1 + \tau^2 \omega_0^2} + \frac{\tau}{1 + \tau^2 \omega_0^2} \sin(\omega_0 t) \exp\left(\frac{t}{\tau}\right) - \frac{\tau^2 \omega_0}{1 + \tau^2 \omega_0^2} \cos(\omega_0 t) \exp\left(\frac{t}{\tau}\right)
$$

Hence we retrieve:

$$
u_c(t) = \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2} \exp\left(-\frac{t}{\tau}\right) + \frac{1}{1 + \tau^2 \omega_0^2} \sin(\omega_0 t) - \frac{\tau \omega_0}{1 + \tau^2 \omega_0^2} \cos(\omega_0 t)
$$

Note that $\displaystyle\lim_{t\to+\infty}\exp\left(-\frac{t}{\tau}\right)$ τ $\Big) = 0$ so that for $t \gg \tau,$

$$
u_c(t) \approx \frac{1}{1+\tau^2\omega_0^2}\sin(\omega_0 t) - \frac{\tau\omega_0}{1+\tau^2\omega_0^2}\cos(\omega_0 t)
$$

This is called the **steady state** of the system. For $t \approx \tau$, we have to take into account the first term which is not negligible, corresponding to *transient state*, i.e. the transition between the off state for $t < 0$ and the steady state for $t \gg \tau$. Finally, note that the steady state is expressed as a function of $sin(\omega_0 t)$ and $cos(\omega_0 t)$, namely the sine and cosine with the same period as the input sine $sin(\omega_0 t)$. We develop this notion in the next part.