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Definition 0.1 (Periodic signal, fundamental period)

A signal x ∈ F(R,K) is periodic if there exists T > 0 such that for any t ∈ R, x(t + T ) = x(t). The smallest T0 > 0

such that x(t + T0) = x(t) for any t ∈ R is the fundamental period. We denote FT0(R,K) the subspace of periodic

signals with period T0.

Remarks:

I If a signal x is periodic with period T0, then it is with period kT0 for any k ∈ Z. This is a cornerstone property

intensively used in the next part.

I In other words, a signal x is periodic with period T if it is invariant by a pure delay of T , i.e. τT (x) = x .

Definition 0.2 (Fundamental frequency, fundamental impulse)

Let x ∈ FT0(R,K) be a periodic signal with period T0. The fundamental frequency of x is the number f0 =
1

T0
, and

the fundamental impulse of x is the number ω0 = 2πf0 =
2π

T0
.

Definition 0.3 (Complex exponential, cosine)

The complex exponential of fundamental impulse ω0, amplitude A > 0 and phase ϕ0 ∈ [0, 2π[ is the following signal in

FT0(R,C):

eω0,A,ϕ0 : t 7→ A exp (i(ω0t + ϕ0))

We simply denote eω0 = eω0,1,0 the complex exponential of amplitude A = 1 and phase ϕ0 = 0.

The cosine of fundamental impulse ω0, amplitude A > 0 and phase ϕ0 ∈ [0, 2π[ is the following signal in FT0(R,C):

cω0,A,ϕ0 : t 7→ A cos(ω0t + ϕ0)

We simply denote cω0 = cω0,1,0 the cosine of amplitude A = 1 and phase ϕ0 = 0.

Remarks:

I With these definitions, we can check that the complex exponential and cosine of fundamental impulse ω0 are periodic

signals with period T0 =
2π

ω0
.

I If a periodic signal with period T0 is the input of an LTI system, then the corresponding output is with period T0 as

well. Indeed let an LTI system L, a periodic signal x with period T0, et y = L(x) the corresponding output. Since LTI

systems commute with pure delays,

τT0(y) = τT0(L(x)) = L(τT0(x)) = L(x) = y

thus y is also periodic with period T0.
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I As we are going to see in Example 0.1, we often deal in practice with signals of the form t 7→ eω0,A,ϕ0(t)Υ(t) and

t 7→ cω0,A,ϕ0(t)Υ(t), namely zero over ]−∞, 0[ and oscillating over [0, +∞[. These signals will be the matter of a

future lecture.

If a signal x is periodic with period T0, signal t 7→ |x(t)|2 is clearly periodic with period T0 as well. Thus for any n ∈ N∗,∫ nT0

−nT0

|x(t)|2dt = 2n

∫ T0

0

|x(t)|2dt

When n goes to +∞, we note that a non-zero periodic signal has infinite energy. However, the average power of such a

periodic signal x is:

P(x) = lim
t→+∞

1

2t

∫ t

−t
|x(u)|2du = lim

n→+∞

1

2nT0

∫ nT0

−nT0

|x(u)|2du =
1

T0

∫ T0

0

|x(u)|2du

We are going to define a subspace of FT0(R,K) containing periodic signals with period T0 which are locally square

integrable, i.e. they have a finite average power.

Lemma 0.1

Let x be a periodic signal with period T0. For any a ∈ R,

∫ a+T0

a

x(t)dt =

∫ T0

0

x(t)dt

PROOF : If a ∈ [0,T0], then T0 ∈ [a, a + T0]. By the change of variable t 7→ t − T0, we get∫ a+T0

a

x(t)dt =

∫ T0

a

x(t)dt +

∫ a+T0

T0

x(t)dt =

∫ T0

a

x(t)dt +

∫ a

0

x(t + T0)dt =

∫ T0

0

x(t)dt

In general, let a ∈ R. If b = a−
⌊

a

T0

⌋
T0, then b ∈ [0,T0] and by the change of variable t 7→ t −

⌊
a

T0

⌋
T0,

∫ a+T0

a

x(t)dt =

∫ b+T0

b

x(t)dt =

∫ T0

0

x(t)dt

This lemma indicates that the integral of a periodic signal with period T0 is identical on any interval of length T0. Therefore,

we can now define the subspace of signals with finite average power and define on this subspace a scalar product base on

the average power, instead of the energy which is infinite.

Definition 0.4

We denote L2T0
(R,K) the subspace of FT0(R,K) containing the periodic signals with period T0 which are square

integrable over [0,T0], i.e.

L2T0
(R,K) =

{
x ∈ FT0(R,K),

1

T0

∫ T0

0

|x(t)|2dt < +∞

}

Definition 0.5

We define a scalar product / Hermitian product over L2T0
(R,K) by

∀(x , y) ∈ L2T0
(R,K)2 〈x , y〉T0 =

1

T0

∫ T0

0

x(t)y∗(t)dt
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From this scalar / Hermitian product, we can define the norm of a signal x to which we can connect the average power of

the signal:

∀x ∈ L2T0
(R,K) P(x) = ‖x‖2T0

= 〈x , x〉T0

i.e.

∀x ∈ L2T0
(R,K) P(x) =

1

T0

∫ T0

0

|x(t)|2dt

Remarks:

I We defined these integrals over the interval [0,T0] but according to the lemma, any interval of length T0 is suitable. In

some cases, it is more interesting to exploit the symmetry of interval

[
−T0

2
,
T0

2

]
, when we deal with odd or even

signals for example.

I We can define cross-correlation and autocorrelation of periodic signals from this new scalar product.

Proposition 0.2

The autocorrelation of a periodic signal with period T0 is also a periodic signal with period T0.

PROOF : Let x ∈ L2T0
(R,K).

∀t ∈ R γx(t + T0) = 〈x , τt+T0(x)〉 = 〈x , τt(x)〉 = γx(t)

because the periodicity of x implies τt+T0(x) = τt (τT0(x)) = τt(x).

Now we study the convolution of two non-zero periodic signals x and y with the same period T0. Let t ∈ R. Then signals

u 7→ y(t − u) and u 7→ x(u)y(t − u) are also periodic with period T0, thus

(x ∗ y)(t) =

∫ +∞

−∞
x(u)y(t − u)du = lim

n→+∞

∫ nT0

−nT0

x(u)y(t − u)du = lim
n→+∞

2n

∫ T0

0

x(u)y(t − u)du = +∞

This result is not surprising, since the notions of energy and convolution are connected through correlation, and non-zero

periodic signals have infinite energy. As for the scalar product, we have to adapt our definition of convolution.

Definition 0.6 (Circular convolution)

The circular convolution ⊗ is a product in FT0(R,K) defined by

∀(x , y) ∈ FT0(R,K)2 ∀t ∈ R (x ⊗ y)(t) =
1

T0

∫ T0

0

x(u)y(t − u)du

Remark: The circular convolution of two periodic signals x and y with period T0 is also periodic with period T0. Indeed, for

any t ∈ R,

(x ⊗ y)(t + T0) =
1

T0

∫ T0

0

x(u)y(t + T0 − u)du =
1

T0

∫ T0

0

x(u)y(t − u)du = (x ⊗ y)(t)
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Example 0.1

We go back to the RC circuit and we look for its response to the input V (t) = sin(ω0t)Υ(t) = cos
(
ω0t − π

2

)
Υ(t),

which is periodic over [0, +∞[. We determine this response with two techniques developped so far: solving the governing

differential equation and computing the convolution with the impulse response.

To abbreviate computations, we set τ = RC , the time constant of the circuit. Recall that the solutions of the homogeneous

differential equation are of the form uc(t) = K exp
(
− t

τ

)
, with K ∈ R. We look for a particular solution of the form

uc(t) = A sin(ω0t)+B cos(ω0t) over [0, +∞[. The derivative of such a function is u′c(t) = Aω0 cos(ω0t)−Bω0 sin(ω0t).

Then the differential equation becomes over [0, +∞[:

(A− Bτω0) sin(ω0t) + (Aτω0 + B) cos(ω0t) = sin(ω0t)

By identification, we get A− Bτω0 = 1 and Aτω0 + B = 0, yielding

A =
1

1 + τ 2ω2
0

and B = − τω0

1 + τ 2ω2
0

Thus we have the solution

uc(t) =

 0 if t < 0

K exp
(
− t

τ

)
+

1

1 + τ 2ω2
0

sin(ω0t)− τω0

1 + τ 2ω2
0

cos(ω0t) if t > 0

Since uc in continuous in t = 0,

lim
t→0−

uc(t) = 0 = lim
t→0+

uc(t) = K − τω0

1 + τ 2ω2
0

for any t ∈ [0, +∞[,

uc(t) =
τω0

1 + τ 2ω2
0

exp
(
− t

τ

)
+

1

1 + τ 2ω2
0

sin(ω0t)− τω0

1 + τ 2ω2
0

cos(ω0t)

Now we want to retrieve this result by the convolution of V (t) with impulse response h(t) =
1

τ
exp

(
− t

τ

)
Υ(t). For

t ∈]−∞, 0[, the supports of uc(u) and h(t − u) are disjoint, thus uc(t) = (V ∗ h)(t) = 0. For t ∈ [0, +∞[,

uc(t) = (V ∗ h)(t) =

∫ +∞

−∞
Υ(u) sin(ω0u)

1

τ
exp

(
− t − u

τ

)
Υ(t − u)du

=
1

τ
exp

(
− t

τ

)∫ t

0

sin(ω0u) exp
(u
τ

)
du

A double integration by parts (left to the interested reader) gives∫ t

0

sin(ω0u) exp
(u
τ

)
du =

τ 2ω0

1 + τ 2ω2
0

+
τ

1 + τ 2ω2
0

sin(ω0t) exp
( t
τ

)
− τ 2ω0

1 + τ 2ω2
0

cos(ω0t) exp
( t
τ

)
Hence we retrieve:

uc(t) =
τω0

1 + τ 2ω2
0

exp
(
− t

τ

)
+

1

1 + τ 2ω2
0

sin(ω0t)− τω0

1 + τ 2ω2
0

cos(ω0t)
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Note that lim
t→+∞

exp
(
− t

τ

)
= 0 so that for t � τ ,

uc(t) ≈ 1

1 + τ 2ω2
0

sin(ω0t)− τω0

1 + τ 2ω2
0

cos(ω0t)

This is called the steady state of the system. For t ≈ τ ,we have to take into account the first term which is not negligible,

corresponding to transient state, i.e. the transition between the off state for t < 0 and the steady state for t � τ .

Finally, note that the steady state is expressed as a function of sin(ω0t) and cos(ω0t), namely the sine and cosine with

the same period as the input sine sin(ω0t). We develop this notion in the next part.

5


